Interhalogens

 
Neutral Interhalogens
XY
XY3
XY5
XY7
IF
IF3
IF5
-
BrF
BrF3
BrF5
-
ClF
ClF3
ClF5
-
ICl
(ICl3)2
-
-
BrCl
-
-
-
IBr
-
-
-
 
 
Polyhalogen cations
X2+
XY2+
X2Y+
XYZ+
XY4+
XY6+
Br2+
ClF2+
Cl2F+
BrICl+
ClF4+
ClF6+
I2+
BrF2+
I2Cl+
-
BrF4+
BrF6+
-
IF2+
I2Br+
-
-
-
-
IBr2+
-
-
-
-
 
 
Polyhalogen anions
Xn-
XYn-
XYZn-
XnY-
XYnZ-
I3-
IF6-
IBrCl3-
I2Br-
ICl3F-
-
IF8-
IBrCl-
I2Cl-
-
-
ICl4-
IBrF-
-
-
-
BrF6-
-
-
-
-
IF4-
-
-
-
-
ClF4-
-
-
-
-
BrCl2-
-
-
-
 
 
Structures
 
All thermally stable, so reflects extensive chemistry.
 
High positive oxidation state examples:
 
ClF5, BrF5, IF7,
 
Low oxidation state examples:
 
BrF, IF disproportionate
 
BrCl, IBr, ICl, stable
 
(ICl2)2 only +3 oxidation state stable with chlorine.
 
 
Synthesis:
 
direct combination works well.
 
 
Properties:
 
diamagnetic, sensitive to hydrolysis.
 
ClF5 + H2OClO2F + HF
 
Good halogenating agents:
 
most E-X bonds stronger
 
ClF3 made on large scale for the nuclear industry.
 
U2OyUF6
 
 
Cations and anions
 
nearly all combinations known.
 
halide donor anions.
 
MX + EXnM+[EX(n+1)]-
 
Route to mixed interhalogen ions.
 
need large cation since B(E-X) can then compensate for drop in lattic energy.
 
 
Cations EXn+
 
Good halide acceptor are: AsF5, SbF5, SbCl5, AlCl3
 
Need strong A-X bonds + high lattice energy.
 
Since no BrF7BrF5 + KrF2 + AsF5BrF6+
cf NF4+
 
Due to small size of F- can get high coordination numbers.
 
VSEPR rules work for predicting structures.
 
Note I2Cl6, dimer but contrasts with AlCl3.